Nathanson heights in finite vector spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nathanson heights in finite vector spaces

Let p be a prime, and let Zp denote the field of integers modulo p. The Nathanson height of a point v ∈ Z p is the sum of the least nonnegative integer representatives of its coordinates. The Nathanson height of a subspace V ⊆ Z p is the least Nathanson height of any of its nonzero points. In this paper, we resolve a conjecture of Nathanson [M. B. Nathanson, Heights on the finite projective lin...

متن کامل

Extending Nathanson Heights to Arbitrary Finite Fields

In this paper, we extend the definition of the Nathanson height from points in projective spaces over Fp to points in projective spaces over arbitrary finite fields. If [a0 : . . . : an] ∈ P(Fp), then the Nathanson height is hp([a0 : a1 : . . . : ad]) = min b∈Fp d ∑ i=0 H(bai) where H(ai) = |N(ai)|+p(deg(ai)−1) with N the field norm and |N(ai)| the element of {0, 1, . . . , p− 1} congruent to N...

متن کامل

Kakeya-type sets in finite vector spaces

For a finite vector space V and a non-negative integer r ≤ dim V we estimate the smallest possible size of a subset of V , containing a translate of every rdimensional subspace. In particular, we show that if K ⊆ V is the smallest subset with this property, n denotes the dimension of V , and q is the size of the underlying field, then for r bounded and r < n ≤ rq we have |V \K| = Θ(nq); this im...

متن کامل

Monochromatic Affine Lines in Finite Vector Spaces

Let d(k;q) be the smallest positive integer d such that if the d-dimensional vector space over the q-element field is k-colored, there exists a monochromatic affine line. It is shown that d(2;4) = 3 and d(3;3) = 4.

متن کامل

Vector Spaces II : Finite Dimensional Linear Algebra

Example 3. If X ⊆ RN is a vector space then it is a vector subspace of RN . Example 4. R1 is a vector subspace of R2. But the set [−1, 1] is not a vector subspace because it is not closed under either vector addition or scalar multiplication (for example, 1 + 1 = 2 6∈ [−1, 1]). Geometrically, a vector space in RN looks like a line, plane, or higher dimensional analog thereof, through the origin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2008

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2008.03.004